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1. Introduction:

In earthquake engineering, the strong non-

stationary characteristics both in time domain and

frequency domain, i.e. amplitude and frequency,

of the earthquake ground motion are well known

and difficult to tackle in applying the ground

motion as an input to acquire the structure

responses. While response spectra method is

currently the favored approach, there are

situations for which the time history analysis is

necessary. Since the number of recorded

accelerograms is too limited to allow selection of

a standard typical record for a given site, there is

a need for generating some realistic artificial

earthquake ground motion records to cover a

variety of uncertainties in the seismic design of

structures [1]. Spectral analysis using the Fourier

transform has been one of the most important and

most widely used tools in earthquake

engineering, but there are cases for which the

Fourier analysis does not provide results that can

physically be interpreted. Over the past few

years, however, researchers have become aware

of the limitations of this technique, especially in

the case of non-stationary signals and nonlinear

systems. As a new method with an obvious

advantage for the time-frequency analysis, the

wavelet transform is now applied in many fields

of studies. Wavelets are a natural extension of the

Fourier analysis. A wavelet is a small wave

whose energy is concentrated in time [2].

Wavelet transform is a good tool adaptive to

time-frequency analysis in earthquake

engineering and has a good

time-frequency discrimination ability. Wavelet

transform can improve the studies of earthquake

engineering from conventional frequency

spectrum analyses to more accurate time-

frequency analyses.

Newland [3] applied wavelets to analysis of

the vibration signals and developed special

wavelets and techniques for engineering

purposes. Iyama and Kuwamura[4], Mukherjee

and Gupta [5], Zhou and Adeli [6], Suarez and

Montejo [7], Rajasekaran et al. [8], and Ghodrati

Amiri et al. [9] developed the wavelet analysis

for generating earthquake accelerograms. With

good time-frequency discrimination ability and

flexible time-frequency windows, wavelet
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transforms are now widely used for analysis of

various signals in time and frequency domain

simultaneously. 

Both Fourier and wavelet analysis have

limitations. Fourier analysis gives good results

for regular periodic signals and wavelet analysis

is suitable for highly non-stationary signals that

possess sudden picks and discontinuities. Other

approaches have been examined and several

algorithms and analyzing functions have already

been proposed [10]. One of them is the best basis

search algorithm which uses wavelet packets. In

this approach, the signal is expressed as a linear

combination of time-frequency atoms. The atoms

are obtained by dilation of the analyzing

functions and are organized into dictionaries as

wavelet packets. The best basis algorithm uses a

minimum entropy criterion and for a signal, gives

the most concise description for the dictionary in

hand.

2.  Wavelet and Wavelet packet transform

Wavelet transform is a mathematical tool

which transforms sequential data in time axis

such as earthquake accelerations to the spectral

data in both time and frequency. Therefore,

wavelet transform provides information on non-

stationary time dependent intensity of motions

regarding a particular frequency of interest.

Wavelets are mathematical functions that cut up

data or function into different frequency

components, and then study each component

with a resolution matched to its scale [11].

Wavelets, which are oscillatory functions of zero

mean and of finite energy, can be used to obtain a

time-frequency representation of a process.  

Due to decomposition of only the

approximation component at each level using the

dyadic filter bank, in a regular wavelet analysis

the results of frequency resolution in higher-level

DWT decompositions (e.g. A1 and D1) are less

desirable (Figure 1). It may cause problems while

applying DWT in certain applications which the

important information is located in higher

frequency components. The frequency resolution

of the decomposition filter may not be fine

enough to extract necessary information from the

decomposed component of the signal. The

necessary frequency resolution can be achieved

by implementing a wavelet packet transform to

decompose a signal further. The wavelet packet

method is a generalization of wavelet

decomposition that offers a richer range of

possibilities for signal analysis. In wavelet

analysis, a signal is split into an approximation

and a detail. The approximation is then itself split

into a second-level approximation and detail, and

the process is repeated. For n-level

decomposition, there are n+1 possible ways to

decompose or encode the signal. In wavelet

packet analysis, the details as well as the

approximations can be split. This yields more

than  different ways to encode the signal. For

instance, wavelet packet analysis allows the

signal S to be represented as A1+A6+D6+D3.

This is an example of a representation that is not

possible with ordinary wavelet analysis [12]. The

wavelet decomposition tree is a part of this

complete binary tree. As mentioned above the

wavelet packet analysis is similar to the DWT

with the only difference that in addition to the

decomposition of the wavelet approximation

component at each level, the wavelet detail

Signal 

A1 D1

A2 D2

A3 D3

A4 D4

A5 D5

Fig. 1. wavelet tree decomposition

Signal

A1 D1

A2 D2 A3 D3

A4 D4 A5 D5 A6 D6 A7 D7

Fig. 2. Wavelet Packet decomposition tree
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component is also decomposed to obtain its own

approximation and detail components as shown

in Figure2.

Each component in this wavelet packet tree

can be viewed as a filtered component with a

bandwidth of a filter decreasing with increasing

level of decomposition and the whole tree can be

viewed as a filter bank. At the top of the tree, the

time resolution of the WP components is good

but at an expense of poor frequency resolution

whereas at the bottom with the use of wavelet

packet analysis, the frequency resolution of the

decomposed component with high frequency

content can be increased. As a result, the wavelet

packet analysis provides better control of

frequency resolution for the decomposition of the

signal [13]. A wavelet packet is represented as a

function, , where ‘i’ is the modulation

parameter, ‘j’ is the dilation parameter and ‘k’ is

the translation parameter [14]. 

(1) 

where i = 1, 2…jn and ‘n’ is the level of

decomposition in wavelet packet tree. The

wavelet is obtained by the following recursive

relationships: 

(2)

(3)  

where is called as a mother wavelet and

the discrete filters h(k) and g(k) are quadrature

mirror filters associated with the scaling function

and the mother wavelet function [15]. These two

filters, h(k) and g(k), are also called group-

conjugated orthogonal filters [16].

The wavelet packet coefficients C
corresponding to the signal f(t) can be obtained as:

(4)

Provided the wavelet coefficients satisfy the

orthogonality condition. 

The wavelet packet component of the signal at

a particular node can be obtained as

(5)  

After performing wavelet packet decomposition

up to jth level, the original signal can be

represented as a summation of all wavelet packet

components at jth level as shown in equation:

(6)

In wavelet packet, standard structure

composed of low and high pass filters is used in

perfect reconstruction filter bank [17]. 

3. Best basis algorithm in wavelet packet transform

The best basis search algorithm uses wavelet

packets. In this model the signal is expressed as a

linear combination of time-frequency atoms. The

atoms are obtained by dilations of the analyzing

functions, and are organized into dictionaries as

wavelet packets. The best basis algorithm

described in Wickerhauser [18] uses a minimum

entropy criterion and for a signal gives the most

concise description for the dictionary in hand.

The application of the best basis search to the

wavelet packet dictionary is equivalent to an

optimal filtering of the signal. For any given

signal, the best basis algorithm decides which

base represents the signal more efficiently.

Comparisons with other methods of analysis such

as wavelet analysis using harmonic wavelets and

classic Fourier analysis have been conducted.

Wavelet packet atoms are waveforms indexed by

three naturally interpreted parameters: position,

scale (as in wavelet decomposition), and

frequency.  For a given orthogonal wavelet

function, a library of bases can be generated

called wavelet packet bases. Each of these bases

offers a particular way of coding signals,

preserving global energy, and reconstructing

exact features [12]. The wavelet packets can be

used for numerous expansions of a given signal.

The most suitable decomposition of a given

signal can be selected with respect to an entropy-

based criterion. The application of the best basis

search for the wavelet packet dictionary is
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equivalent to an optimal filtering of the signal.

For any given signal, the best basis algorithm

decides which base represents the signal more

efficiently (Figure 3).

4. Choosing the Optimal Decomposition

Based on the organization of the wavelet

packet library, it is natural to count the

decompositions issued from a given orthogonal

wavelet. As a result, a signal of length  N=2L can

be expanded in at most 2N different ways, the

number of binary subtrees of a complete binary

subtree of depth L. As this number may be very

large, and since explicit enumeration is generally

unmanageable, it is interesting to find an optimal

decomposition with respect to a convenient

criterion, computable by an efficient algorithm.

Functionals verifying an additivity-type property

are well suited for efficient  searching of binary-

tree structures and the fundamental splitting.

Classical entropy-based criteria match these

conditions and describe information-related

properties for an accurate representation of a

given signal. Entropy is a common concept in

many fields, mainly in signal processing [19].

5. Proposed method

Generally, the main idea of the proposed

method is to use wavelet packet with best-basis

algorithm theory. In this study, coefficients of

wavelet packet and inversion are calculated using

best-basis algorithm by entropy-based. An

entropy-based criterion is used to select the most

suitable decomposition of a given signal and also

an adaptive filtering algorithm, based on work by

Coifman [19] and Wickerhauser [18]. Such

algorithms allow the wavelet packet tools to

include "Best Tree" features that optimize the

decomposition both globally and nodally. 

Many mathematical forms for wavelet function

have been developed by Daubechies [20], Chui

[21], Meyer [22] and many other researchers.  In

this approach we compare different forms of

Daubechies’s (db's). The records are decomposed

with different forms of db's to compare the results

with each other. For example different kinds of

wavelet packet tree for using wavelet packet

transform with best basis algorithm are shown in

SIGNAL S=A(0)

A(1)

DA(2)AA(2)

D(1)

DD(2)AD(2)

     ADD(3) DDD(3)ADA(3) DDA(3)

Fig. 3. Wavelet packet tree (Best-tree)

Fig. 4. Different kinds of wavelet packet best basis tree for the same signal

Wavelet packet (Best-Tree by db10)                             Wavelet packet (Best-Tree by db4)
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figure 4. Although the wavelet tree and wavelet

packet tree are the same while using db4 and db10,

they are different when the wavelet packet with the

best basis algorithm is applied (Figure 4). The

energy corresponding to the terminal nodes used

for the signals’ reconstruction is plotted in figure 5

for three different methods which allow a

comparison among them. It can be seen that the

maximum energy corresponding to the terminal

nodes by using db4 for wavelet, wavelet packet and

wavelet packet with best tree are %48.373,

%48.3670, and % 73.8764 respectively (Figure 5).

If this comparison is being done with db10 the

results are % 44.7728, %44.7624, %94.3793

respectively (Figure 6). It shows that db10 gives

more better and efficient results with less nodes

because of its orthogonality and satisfactory

resolution in both time and frequency. For choosing

entropy several models such as Non-normalized

Shannon entropy, energy entropy, log energy

entropy, threshold entropy, SURE entropy and also

several others are applied and finally threshold is

selected as the entropy with the value 0.2.

After signals are decomposed with the wavelet

transform, wavelet packet transform and wavelet

packet transform with best basis algorithm, they are

reconstructed with these methods and also with only

one coefficient of the last method which corresponds

to the maximum energy. The results are shown in

figure 7 for db10 and figure 10 for db4.

For verifying the results in another way the

response spectrum of the reconstructed signals
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wavelet-tree
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Energy corresponding to the term inal nodes by db4 for Tabas
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Fig. 5. Energy corresponding to the terminal nodes of reconstructed signal by db4 for Tabas
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Fig. 6. Energy corresponding to the terminal nodes of reconstructed signal by db10 for Tabas
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with different methods are computed and

compared with each other. The response

spectrum is a plot of the maximum responses of

all possible single degree-of-freedom systems

due to a specified load function. It can take the

form of any quantity of interest, e.g.

displacement, velocity, acceleration, etc., and is

usually plotted versus the natural frequency or

period range of the system under investigation.

The pseudo-acceleration and pseudo-velocity of

the reconstructed signal with different methods

and actual signal are computed and the results are

shown in figures (8-9) using db10 and in figures

(11-12) using db4. It is interesting that wavelet

packet transform with best basis method and

selecting just one coefficient result in an answer

much more near to the actual signal.  In order to

verify the error of the process while calculating

PSA and PSV, an error measure is needed. It is

proposed to use the Root-Mean-Square of the

differences in percentage at each of the N

periods. For example the error for PSA is

calculated as follows:

(7)

According to figure 13 the error for computing

PSA and PSV which occurs in reconstructed

signal with wavelet, wavelet packet with best

basis and only one coefficient  of this method

with maximum energy is %0.3641 using db10,

and in figure 14 it is  %13.0467 using db4. One

more result is that db10 works much more

accurate. It means that the signal can be

reconstructed and used by this method in less
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Fig. 7. Comparison of reconstructed signals with the

terminal nodes with different methods for Tabas by db10

Fig. 8. Comparison of PSA for actual and reconstructed

signal by different methodes for Tabas by db10

Fig. 9. Comparison of PSV for actual and reconstructed

signal by different methodes for Tabas by db10
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time with the least coefficients.

6. Numerical examples

This study has been accomplished for 4

selected records of Iran with different types of

soil [23]. The records are Tabas (1978), Manjil

(1990), Gachsar (1990) and Naghan (1976).

These records were scaled with their peak ground

acceleration to 1g. In this study all records have

t=0.02 sec, and 211=2048 points consequently.

Therefore a series of zeros were added to the

records which were shorter than desired length to

gain the proper length and for the longer ones, the

strong duration of records with longer length was

considered according to MacCann and Shah

Algorithm [24]. All pseudo-velocity response

spectra were calculated with 5 percent damping

ratio [25]. The Mallat algorithm is in fact a

classical scheme known in the signal processing

community as a two-channel sub band coder

[26]. This very practical filtering algorithm yields

a fast wavelet transform — a box into which a

signal passes, and out of which wavelet

coefficients quickly emerge. So in this study,

coefficients of wavelet and inversion were

calculated with Mallat Discrete Wavelet

Transform (DWT and IDWT), respectively [27].

In this section, the proposed method has been

applied with MATLAB software [12] for all types

of earthquake records. Due to the limitation only

the results of Tabas are shown in this paper.

7. Conclusion

In this study, the wavelet packet transform

with best-basis algorithm was used, which can
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Fig. 10. Comparison of reconstructed signals with the

terminal nodes with different methods for Tabas by db4

Fig. 11. Comparison of PSA for actual and reconstructed

signal by different methodes for Tabas by db4

Fig. 12. Comparison of PSV for actual and reconstructed

signal by different methodes for Tabas by db4
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express time signal by combination of similar

time shifted wavelets with different time spans.

As expected, the adopted method gives better

results compared with other methods of analysis

such as wavelet basis analysis. According to

graphs, the results of WPT using best-basis

algorithm shows that only a group of the

coefficients (not all of them) can reconstruct

original signal. It is interesting that by applying

this method to the best tree there is a coefficient

that has maximum energy and can reconstruct the

signal. 

The advantages of this method can be

summarized as follows:

1- The over complete structure of WPT

provides flexibility for the signal representation

to achieve better classification accuracy. 

2- The best basis provides the most suitable

frequency sub bands for the signal representation.

3- The subject-based adaptation feature

extraction with this method constructs a wavelet

packet best basis fitted for each object and so it
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Fig. 13. Comparison of percent error in PSA and PSV from actual and reconstructed signal with different methods for Tabas

by using db10

Fig. 14. Comparison of percent error in PSA and PSV from actual and reconstructed signal with different methods for Tabas

by using db4
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can find the suitable and specific features for a

subject's signals.

This method and its resulted coefficients (even

one coefficient) help to reconstruct the signals

rapidly. The feasibility and reliability of the

proposed method have been verified with

different accelerograms from Iran. As mentioned

above by this method in less time with the least

coefficients, the signal can be reconstructed and

its results can be used in other studies.
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